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CLASSICAL MECHANICS AND RELATIVITY
UNIT I: PRINCIPLESOF CLASSICAL MECHANICS

Mechanics of a single particle — conservation laws for a particle — mechanics of a system
of particles — conservation laws for a system of particles — constraints — holonomic & non-
holonomic constraints — generalized coordinates—configuration space—transformation equations
— principle of virtual work.

UNIT Il1: LAGRANGIAN FORMULATION

D’Alembert’s principle — Lagrangian equations of motion for conservative systems —
applications: (i) simple pendulum (ii) Atwood’s machine — Lagrange’s equations in presence of
non- —Lagrangian for a charged particle moving in an Electromagnetic field.
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conservation of energy — Hamilton’s canonical equations of motion — applications: (i) one
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UNIT I: PRINCIPLES OF CLASSICAL MECHANICS

Mechanics of a single particle — conservation laws for a particle — mechanics of a system of
particles — conservation laws for a system of particles — constraints — holonomic & non-
holonomic constraints — generalized coordinates — configuration space — transformation
equations — principle of virtual work.

1.1 Mechanics of a single particle : conservation laws

Newtonian mechanics to deduce conservation laws for a particle in motion. These laws
tell under what conditions the mechanical quantities like linear momentum, angular momentum,
energy etc. are constant in time.

Conservation of linear momentum:
If the force F is acting on a particle of mass m, then according to Newton’s law of

motion, we have

= d_p - d(mv)
dt dt
Where p = mv is the linear momentum of the particle.

If the external force, acting on the particle is zero, then

d_p _ d(mv) -0

dt dt

Thus in absence of external force, the linear momentum of a particle is conserved. This
is conservation theorem for a free particle.
Conservation of angular momentum:

The angular momentum of a particle P of a mass ma about a point O is

Fig. 1.1
J=rXp e 1)

Where r is the position vector of the particle P and p = mv is its linear momentum.

If the force on the particle is F, then the moment of force of torque about O is defined as
T=rxF e (2)
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Differentiate equation (1) with respect to t

d d d d d
_]:M:_r Xp+r_r Xp—p
dt dt dt dt dt
d
Y -rxF
dt
d d
(= xp=vxmv=0, F= 2
dt dt
-4y _acxp A3)

dt dt

Thus the time rate of change of angular momentum of a particle is equal to the torque acting on

it.

If the torque acting on the particle is zero, i.e., 7 =0, then
Y =0 or J=constant
dt

Therefore the angular momentum of a particle is constant of motion in absence of external
torque. This is the conservation theorem of angular momentum of a particle.

Conservation of energy:
(a) Work: work done by an external force F upon a particle in displacing from

point 1 to point 2 is defined as
Wi = flz F.dr  ----eeeeeeee- 4
(b) Kinetic energy and Work — Energy theorem:

. , d
According to newton’s second law F =m d—: and hence

F.dr=m%. dr
dt

=mZ. vt (dr =22 dt = v.dt)

Therefore, equation (4) is

Wi = fle.dr= d(%mvz)
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= %m vy — %m vi
Thus the work done by the force acting on the particle appears equal to the change in the kinetic
energy. i.e.,
Wi = [[F.dr= To-Ta
This is known as Work — Energy theorem.
(c) Conservation of force and potential energy: If the force acting on a

particle is such that, the work done along the closed path is zero. Then the force is called

conservative force.

Fig. 1.2
PfF.dr=Q [ F.dr

PfF.dr-Q [‘F.dr =0

The total work done is zero. Because it is a closed path.
ie., $F-dr=0

In closed path displacement (dr) also zero.
Conditions:

Q) Accoding to storke’s theorem

§F.dl = [[.ds(V X F)
(i) Inthiscaseds #0, VX F=0
(iiiy CurlF=0or
VxF=0
(iv) F=-Vv
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VxVv=0
F=-Tv=- (1554 jz—;+ k2
Wi = fle.dr
:flz — Vv dr
We know that
Wi = ff%.dr
=- flz dv
=- (V2- V1)
W= Vi- V2 V — potential energy

Which is the change in potential energy when the particle move in position 1 to 2.
(d) Conservation of energy:
Total energy is defines as a sum of kinetic energy and potential energy is constant for a

conservative force.

W= Vi- V2
W= T,- T
T-Tr = Vi-W

Ti+ Vi = T2+ VW2
Sum of potential energy and kinetic energy of a particle in conservative force field is
constant.

2.2 Mechanics of a system of particles :

(more than one particle is represented by a coordinate)
Let consider a system have a n particles, the mass of the particle is my, mo,............. ,
mi - mass of i" particle
the position of the masse are represent  r1,, 2,3, .............. i
ri- position of the i™ particle
Centre of mass is defined as the whole mass of the body or system assumes to be concentrated.
Consider two particle system at the position ryand r2

Centre of mass represent the centre of point between the two masses.
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.. mq1r{ + MmMor-
Position of the centre of mass R 41 __z2

m1+m2
For an system of a particle,

mqr, + m2T2+ msry 4

Position of the centre of mass R = ———————————— 2 T e MnTn
m1+m2+ ms T +mn
R = i, mir;
= 2=l
Zi:lml
R = i, mir;
M

M - total mass of the system
M=my+my,+ mg + - .cocce oo oo . tmy,
Newtons laws are valid for a system of particle.
The force acting on the i"" particle and the internal force are also acting on a it"
particle by another particles.
Fi= Fie + Xjo1 Fij
From Newton’s third law (Fi2 = - F21)
F;; - force acting on a i particle by the j particle.
From newton’s second law

ap;
FF= — =
L dt 4}

_ d) m;v; .
= = (vi=1)
dYym;r

dt

2.
asr;

dt?

=m; 2
Conservation of linear momentum:
The centre of the mass R of the system by

Yic, MiT;
M

R =
R is the position of the centre mass

Differentiate above equation with respect to t
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M— = e My — T i, +m, —
dt 1 g 2 4t 3 dt LT
= m1V1 + m2V2 + m3V3 T e + mnVn
dR
M— = Ymuv; = p

From this equation total linear momentum is represent as the product of total mass of the system
and total velocity of the system with the centre of mass

F= dp _ d(MV)
dt dt

- MY — 4R
_Mdt (V_dt)

d?R
=M —
dt?

Total external force acting on a system of the particle is zero, the linear momentum of the
system is conserved.

Conservation of angular momentum:

Consider the i" particle mass m; , and velocity v;

Y
=r-R
cMm Tl m,
P
R
ri
0 X
Fig.1.3
From above figure
ne=1ri-R
The angular momentum is written as
L=r xp

For i particle
Li=ri X pi
i=1, Li=rn X ps
1=2; Lo=r2 X p2

i=3; L3=r3 X p3
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Differentiate it,
dL; _ d(ri x Pi)

dt dt
dL; ar; dap;
- = XP+ 1 X—
dt dt dt
dp;
(Fi = -
dt
= v;xmvy; + 1 x F
dL; .
— = 1; x Fi
dt
For the system of the particle
dL; _ n
= - i1 x F)

We know that
Fij= Fi+ X Fj

dL

el = (o x (F+ Yo Fj))

dL _ n n n

a i=1( 1 X Fp) +Zi=1 z]-:l (r; x Fy)
from newton’s third law F;; = — Fj;

(i x F;) + (15 x Fy)

TiXFi—T}XFi'
=(rn—1n)x F =0}
%

e - Zim(mox F)

- 7

The external torque acting on a system is defined the rate of change of angular

momentum.
dL
if — =0
dt
T = constant

In absence of external torque the angular momentum is zero.
Conservation of energy:

(@) Kinetic energy:
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Total kinetic energy of the system of particle is

1
= Yigmv]

1 — —>
= Zi;mi( (vl : vl))
We know that Vi=V + Vic
Xim; ric = 0
1
= Zi;mi(v + vie) (v + i)

1

1 1 1
- sz(V.V) + Ezm(v-vic) + Ezm(vic -V) + Ezm(vic-vic)
1 1
=Yiomv? + Tiomvg
Kinetic energy = %MV2 + Zi%mivizc

The kinetic energy of the system of the particle is equal to kinetic energy of the system
concentrated at the centre of mass and kinetic energy of the system at the centre of mass.
(b) Potential energy:

Wi = Ziflz F*-dr + ffZiZ,- Fy; dr (I1#]) =mmmmmmmmmmmmeees 1)

We know that F=- Vv

Ff = - Vv
Fij =-Vivy - (2)

Take a first term,
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Take a second term
2 1 2
Ji LiXjFij dry = S5 %5 f) Fiy dry + Fy dny
1 2
= X% [, By (dri- dry)
dr; - dr; = drj
1 2
= %X, Fyj dry
Substitute equation (2) in above equation
1 2
= XX )y (= Vivy )dn;
_ 1 2 dvij
= ;Ziijl (- dry ) drj
1 2
= S XX ) - dvy
_ 1 2 2
== S LiXf, (v 1, e (4)
Equation (4) and (3) are substitute in equation (1)
1 2
Wi = -3 wil? + S 5% [0 (v 1

W12

Uy — V2
Therefore, the total potential energy of the system is
1
Vo= Fiwil® + 5 LiXilvg 17 (5)

Comparing the equation,

T + V = constant
Therefore, the total energy of the system is conserved.

The conservation of energy is defined as the total energy of the system is constant.
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2.3 Constraints :

Often the motion of a particle of system of particle is restricted by one or more
conditions. The limitation on the motion of a system is called constraints and the motion is said

to be constraint motion.

2.4 Holonomic constraints:

Constraint limit the motion of a system and the number of independent coordinates,
Needed to describe the motion, is reduced.
If r is the position vector of the particle at any angular coodinates 6 relarive to the
centre of the circle, then,
r|=a
r-a==o0
The above equation express the constraint for a particle in circular motion.
Suppose the constraints are present in the system of N particles. If the constraints are
expressed in the form of equations of the form
f(ry,r,r,...,t)=20
then they are called holonomic constraints.

Let there be m number of such equations to describe the constraints in the N
particle system. Now, we use these equation to eliminate m of the 3N co-ordinates and we need
only n independent coordinates to describe the motion, given by

n=3N - m
2.5 non holonomic constraints:

In a non holonomic system, all the coordinates cannot vary independently and hence the
number of degrees of freedom of the system is less than the minimum number of coordinates
needed to specify the configuration of the system.

Example:
(1 The motion of the particle, placed on the surface of a radius a, will be
described by

||

v
@

r-a=>>o0

12
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In a gravitational field, where r is the position vector of the particle relative to the centre
of the sphere, the particle will first slide down the surface and then fall off.
(i) The gas molecules in a container are constrained to move inside it and
related constraint is another example of non holonomic constraints.
If the gas container is in spherical shape with radius a and r is the position vector of a
molecule, then the condition of constraint for the motion of a molecule can be expressed as
r|< a
r-a<ao
Example:
In the following cases, discuss whether the constraint is holonomic of nonholonomic.
Specify the constraint force also.

Q) Motion of the body on a inclined plane under gravity.

(i) Abead on acircular wire.

(iii) A particle moving on an ellipsoid under the influence of gravity

(iv) A pendulum with variable length.

Solution:

(1) When a body moves on an inclined plane, it is constrained to move on the inclined
plane surface. Hence the constraint is holonomic. The force of constraint is the
reaction of the plane, acting normal to the inclined surface.

(i)  The constraint is that the bead remains at a constant distance a, the radius of the
circular wire and can be expressed as r = a. hence the constraint is holonomic. The
force of constraint is the reaction of the wire, acting on the bead.

(ili)  The constraint is non holonomic, because the particle after reaching a certain point
will leave the ellipsoid. Force of constraint is the reaction force of the ellipsoid
surface on the particle.

(iv)  The constraint is holonomic. Because the constraint equation is | r | = L (t). the

constraint force is the tension in the string

2.6 Generalized coordinates:

Set of independent coordinates sufficient in number to describe the state of

configuration of a dynamical system.

13
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These coordinates are denoted as,
qu, g2, 03, ceeeenennnnnnn , qn
The generalized coordinates for a system of N particles, constrained by m equations, are
n=3N-m
It is not necessary that these coordinates should be rectangular, spherical or cylindrical.
For a system of N particles, if r1, r2, r3 are the cartesian coordinates of the i particle,

then these coordinates in terms of the generalized coordinates gk can be expressed as,

FE=re (e, 02,03 coenenrnnnnnnn. ,qn, 1)
R=r2(01, 02,03 ccooveenennnnn. ,qn, 1)
R=r3(01, 02,03 «cooveenennnn.. ,qn, 1)
M= (g1, 02,03 ccoveenennnnn. ,qn, 1)

some example of the mechanical system with the corresponding generalized coordinates,

(1) Rotating mass (m) at the end of a string in circle of radius (r): one
generalized coordinate q: = 6. Where 8 is the angle between rotating string and fixed
particular radius.

(2) Simple pendulum: There is one generalized coordinates qi= 6. Where 6
is the angle which the thread of the pendulum makes with the vertical line through the point of
suspension.

(3) Fly wheel:  Only one generalized coordinates g. = 6 where, 8 is the angle
between a particular radius of the fly wheel and fixed line perpendicular to its axis.

(4) Beads of an abacus: One generalized coordinates gq:= x along the horizontal

wire.

(5) Particle moving on the surface of a sphere: qu = 6, Q2= ¢ are two
generalized coordinates.

(6) Particle moving on the surface of a sphere: q1 = r, Q2= 6 are two

generalized coordinates, where r is the radius drawn from the vertex as origin to the position of

the particle and @ is the angle of the radius vector with a fixed slant edge of the cone.

14
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2.7 Configuration space:

The configuration of the system of N particles, moving freely in space, may be
represented by the position of a single point in 3N dimensional space, which is called
configuration space of the system.

The configuration space for a system of one freely moving particle is 3 -
dimensional and for a system of two freely moving particles, it is six dimensional.

In later case, the configuration of the system of the two particles can be
represented by the position of a single point with six coordinates in six dimensional space. This
system has six degrees of freedom and its configuration space is six dimensional.

The degrees of freedom of a dynamical system is defined as the minimum number of
independent coordinates required to specify the system compatible with the constraints.
If there are n independent variables, say  q1, 02, 03, «+evvvvvvenenn. , gn @nd n constants
C1,C2,C3) covveeennnnnnnn. , cn such that
icicidq; =0

At any position of the system, then we must have

2.8 Principle of virtual work:

Consider the i" particle. Position vector of i particle is r; and the generalized
coordinate of i particle is
=i (01, 02, 03, cvevevnnnnnnn. ,qn, t)
In virtual displacement does not involve the time. The virtual displacement of the
i" particle is represented by
Sri=o0ri (g, 02,03, ceveerennnnnns ,qn, ©)
Force acting on the i particle is
Force = external force + force of constraints
Fi= F# + Fi e Q)
F? - applied force
If the system is in equilibrium then the total force acting on a system is zero.
e, Fi=0
the sum of virtual work is

15
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Substitute equation(1) in above equation, we get

Fi=% (F' + F;)dn

W =3%; F'ér + %
Zi Fia 5I’| -

Xi Fi o
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=0
Fi 6ri =0
work done by the external force

- work done by force of constraint

Work done by the force of constraint is zero and a virtual displacement is written as

SW = ¥; F26r

= 0

The principle of virtual work states that the total work done is zero for a system in

equilibrium. Principle of virtual work is deals with its only with states of a system of particles.

16
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UNIT Il: LAGRANGIAN FORMULATION

D’Alembert’s principle — Lagrangian equations of motion for conservative systems —
applications: (i) simple pendulum (ii)Atwood’s machine — Lagrange’s equations in presence of

non- —Lagrangian for a charged particle moving in an Electromagnetic field.

2.1 D’Alembert’s principle:

It states that any system is in equilibrium and a force is equal to the sum of actual force
and the reverse effective force.
D’Alembert’s tried to introduce the motion of the system of particle.
Let consider the motion of a system of n particle. Fi force acting on the i particle.
According to Newton’s second law,

Fi = % =p ( dynamic)
Fi+ (-p, ) = 0 (statistic)
Fi-p, =0

- p, - reverse effective force
The above equation represent the i" particle in the system in equilibrium and the force is equal
to the actual force ( Fi) and the reverse effective force (- p, ).

For a virtual displacement Jr;
iwi(F; —p,) 6 =0
(F=F+f)
= ((FF + fi) —p) 6ri =0
i (Ff —p) o + XL, fi 6 =0
~. fi éri - total work done by the force of constraint is zero.
L (FF —p)dni =0

The above equation represents the D’ Alembert’s principle.
Since the force of constraints do not appear in the equation and hence now we can drop the
superscript. Therefore, the D’ Alembert’s principle may be written as,
(F —p)on =0

17
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2.2 Lagrangian equations of motion

Let consider a system of N particles ry, r, rs,....... ,tn _having m constraints.
The number of independent coordinate is
n=3N-m
The generalized coordinate are represent as

01,02, 03, «ovvvnnennnnn. , gn
Therefore the transformation equation representing the position of i particle ,

=i (01, 02, 03y cvovevennnnnnn. o qn, 1) -mmmmmmeeee- 1)

Virtual displacement &r; is given by

ari . .
6r.—a—5q1+a—qz6q2+ ........... +6qn6n+56t
It is time independent
= on ori or
ori = 34, 6q, + 30, 6qy; + .o + 3, 6qn
ari
L e (2)
Differentiate equation (1) with respect to time
L L N + 2 dan 0%
dt dqq, dt dq, dt dqn dt at
_on oy O o oy O
n—aql q, + FPe (0 U +6q qn t 5%
. ar; ar;
A=V BRag e * 50 e @3)
Differentiate with respect to g,
67‘1 arl .
o Zk 1aq """"""" 4)
According to D’ Alembert’s principle,
=1 (FF —p) o =0
n—l Fi 6ri - ?=1 Ijl 6ri =0 - (5)

18
. CLASSICAL MECHANICS AND RELATIVITY



Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli
Take first term of equation (5)

ar;
= B o= Xing B (Zkeag,, Sak)

or;
= T (It Figl) oa

I D ¥ T P (6)

Where G, = XL, F; g;i ------------- (7)
k

Gy - Qeneralized force
Take second term of equation (5)

i D 6 o= Yomy; f 6

l
l 1ml ot ori

= Yicamy; T Y= 1aq Ak
= Xk 1(2110 - my 1) 8qy - 8)
{%(miﬁj_;i):miﬁ:_;i+miﬁ%(%
miﬁg—;izi(miﬁg—;i)'mildt :;;)}

Above equation is substitute in equation(8), we get

B Boon = B Bhage(mini 30 ) = Tiamit 2 (50)) 8g (@)

Substitute equation (4) in (9) we get
=1 Do Oni = Yo ( Xinic— Ximymg 7 dt(
. o7, . d :
= T (T (e 2 ) = Bihami i o= (50)) Sq

_ . o7 . dn,
= Yk=1( Zic 1dt( -na—m‘()— Tisami 1 o) 8ax

19
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d a 1 : d 1 :
= Yk=( Z?=1a(@ (5 mr?) )— i=1 g (3 Mi7%) ) 64

% m; r2;= T - is kinetic energy of the system,

. d oT daT
T A G (e e K L (10)

Substitute equation(10) and (6) in (5), we get

d ( oT dr
Yk=1Gr 0qx - 21:1(5(67‘,( )— d_q'k) 8q, = 0
d [ oT dr
£=1{(E(a—q~k )— )~ G } 6qx =0 ------oee- (11)

Since &g, is independent of each other, their coefficient must be zero.

DB SEAE:

oqk dqg
d [ ar dr
(E(a_%) ~ ) = Gk (12)

Above equation represent the general form of Lagrangian’s equation.

2.3 Lagrangian equations of motion for conservative systems:

Let consider a i particle, the force acting on the i" particle

Fiz -Viv =28 e (13)
ari
Gy = Xi1 Fi EP

or;
— n 14
= =1 (=Viv)—

0qy
—yn _ OvyOr
=S~ (50) 5ot
av
= - a """""""""" (14)

Substitute equation (14) in (12), we get

a(amy_ e
dt \ 9qy dag oqxk
20
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L(Iy
dt \ aqy dqr  0qg
d(ar ) ar-vy  _
dt \ 94y dqy B

V — potential energy

Since the potential is the function of generalized coordinate g« and not dependent of

generalized velocity.

. av
e, — =0
aqy

i(a(T—v) ) _ e g

dt oqk dqy
d [ oL dL - _
woi )~ an =0 (15)

The above equation represent the Lagrangian equation for a conservative system.
L=T+ V
The Lagrangian is the functionof L = L (4, q,t)
(velocity, position, time)

L(q.091t)=T(qaqt) +V(@)

2.4 Lagrange’s equations in presence of non- conservative forces:

Let us consider the system acted upon by conservative force Fi and non —

conservative force fi the component of generalized force is represent by

G = Xia -:_;i
F=F+f
Ge= Xy (F + fi ). ot
ak
Gy = Xty Fi g;i + =1 i g;i
21
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For conservative system,

_ _ ov
F|— Viv - or;

or;
G, = T‘_ F; -t
k i=1 i aqx

arl-
oqy

?:1 (=Viv)

aTi
oqx

av
=1~ (a_rl-

v

0q

v '
Ge = = 5o + G

ari

[ n
Gk - i=1 ﬁ aqk

The generalized form of Lagrangian equation is

d ( T dar
(E(Z) -2y = g
dt \ 9qy dqy

d oT daT ov
(A(Zy-dy ooy gy
dt \ aqy dqy 0qy

v
oqx

i(a(T—v) ) _d(T-v)
dat 94y aqy

d ( oL ) a e
dt \ oqy dqg

The above equation represents the Lagrangian equation in presence of non — conservative

|
=

force.

22
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Applications:

2.5 (i) Simple pendulum:
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Let 6 be the angular displacement of the simple pendulum from the

equilibrium position. If
bob, then the displacementalong arc OA =s.

[ be the effective length of the pendulum and m be the mass of the

Fig. 2.4
Lagrangian equation is given by,
wlzs)— @ =0
L=T+YV;
arc length

Where

The velocity is represent as v = & = 209
dt dt
-1 %
dt
=16
T=-mv? ==m(10)>?
= -ml?262

original length
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Potential v = mgh

OB = OC - CB
h=1- [cosf
h=1(1-cosf)
potential energy is given by
V=-mgl(l-cosf) = =mmmememememee- (3)
We know that
L=T+V
L:%mlzéz-mgl(l-cose) ------------ 4)
Substitute equation(4) in (1)
i(a(%mlzéz — mgl(1-cosd) ) _ d(3m1262 - mgl(1-cos6 ) - o
dt a0 e
i<6(§m1292 ~ mgl(1-cosf) ) B d(5m126% - mgl —mgcosb ) -0
dt a6 dae
d(mi?0) + mglsind = 0

dt
ml? 8 + mglsingd =0
Above equation is divided by m [
16+ gsind= 0
Sin6 = 6
16+ gf8=0
Above equation is divided by [
6+36=0

The above equation represent the equation of motion of a simple pendulum.

24
. CLASSICAL MECHANICS AND RELATIVITY



Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

0+ w20=0
Wherea)2=%
w= [2
l
T=2%
w

T=2—”=2n\/z
\/% g

This is represent a simple harmonic motion of period.

(ii) Atwood’s machine:
The atwood’s machine is the example of a conservative system with

holonomic constraints. The pulley is small, massless and frictionless.
Let the two masses m1 and m2 which are connected by an inextensible string

of length [. Suppose x be the variable vertical distance from the pully to the mass m1 then

mass m2 will be at a distance [ - x from the pulley.

X
The velocities of two masses
dx
Vl = E
There is only one independent variable
(il - dl d . .
Vz=g= E_Z_-0-x=-1%
dt dt dt

Kinetic energy of the system is
25
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1 ) 1 )
T=-m x? + - m2 x?

N =

%% (m1 + mz)
Potential energy of the system is

V = -migx - meg (l-x)

Thus the lagrangian is

L=T-V

—%m1 x? + %mz %% + migx + meg (l-x)

Lagrangian equation is given by,

d oL dL
“(=)-= =0
dt \ 9x dx

=0

d 6(%m1 X% + %mz %% +migx + m2g(l-x)) d(%ml %%+ %mz %% +migx + m2g (l-x))
dt a6 de

%(9& (my+ my)) - (myg— myg) = 0
%(x (my+ my)-g(my — my) = 0
X(my+ my)-g(my — my) =0

i(m+ my) = g(my — my)

- (m;— my)
X (my+ my) g

If m1 > m2 the mass mi1decends with constant acceleration.

If m1 < mz the mass m1ascends with constant acceleration.
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(i11) Lagrangian for a charged particle moving in an electromagnetic field:

The force acting on a charge g, moving with velocity v in an electric field E and magnetic

induction B is given by

F=q(E+ (VX B)) -mmmmmmm- (1)
Where E = -Vo -‘;—? ------------------ 2

¢ - electric scalar potential
A - magnetic vector potential
B=VX A e 3)
Substitute equation (2) and (3) in equation (1), we get

94
F=d(-Vp -5 + (VX VX A) —oemee )
Let us consider the X — component.
. ~ 09 ~ 09 ~ 0@
= — 4+ —_ —_
Since, Vo t5x Y3, + Z-
From equation (4) we take
9A dA 9A dA
— y X X zZ
X X = — — =) - = - —Z
(V v A)X Vy( ox ay) \ 5z ax)
9Ay
Add and subtract the term vx "
9A 9A 9A dA 9A dA
- y X X Z X X
x V X = A Y i = 4 + =X . el
( v v A )X Vy dx Vy dy Vz 0z Vz ax Vx ax Vx ax (5)
dAy _ 0Aydx |\ 0Aydy , 0Aydz | 34
dy ox dt dy dt dz dt at
dAx aﬂ x+%v +aﬁvz+%
dy ox ay Y d ot
dAy Ay Ay Ay Ay
—_— —= = —= + — + —V; -
dy ot ax VX ay 7 5z Vz (6)
0(v.A) _ 0(vxAx + vy Ay+ v A7)
ax ox
0Ay 0Ay 9Ay
= —= + — + —V; e
ax Ty T G Ve )

Substituting equation(6) and (7) in (5), we get
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d(v.4A) dAy +
x dy

94y

(VX VX A= o

Hence from equation (4) , the x — component of the force F is

Frzq(- 20 2Ax , 20 day, Ok
ax at ax dy at
_ d(p-v.4) 0Ay
=al ox at )
. (v . A O( vy Ay + vy, Ay+ v A
Since .4 _ AxevtyHhtvals) o g,
0vy vy

And scalar potential ¢ is independent of v,, we have

dAx _

at

4.9

T odt 6vx((p_v )

Fx

] a
Gl 5(o—v. D+ (G (@—v . 4) ]
we defined a generalized potential U, given by

=q(p—v.A)

Which is velocity dependent potential

SRR B
The lagrangian equation is
fm) - % = Fo e (13)
Substitute equation(12) in (13) we get
s2)-% -
L=T - U
=T- q(p—v.A
=T- qep—qv. A

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

The above equation is represent the charged particle moving in an electromagnetic field.
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UNIT I11: HAMILTONIAN FORMULATION

Phase space — generalized momentum and cyclic coordinates — Hamiltonian function and
conservation of energy — Hamilton'’s canonical equations of motion — applications: (i) one

dimensional simple harmonic oscillator (ii) motion of particle in a central force field.

3.1 Phase space:

In the Hamiltonian formulation, we observe from the equations of motion that the
momentum coordinates px (k=1,2,3, ............. ,n ) and position coordinates gk (k =1, 2, 3,
............. ,n) play similar roles.

We can imagine a space in 2n dimension, in which a complete dynamical specification
of a mechanical system is given by a point, having 2n coordinates (p1,p2,...pn, q1,02,...qn ).

Such a space is known as 2n — dimensional phase space.

If we know the state of a mechanical system at time t. i.e., we know all position and
momentum coordinates, then this state will be represented by a specific point in the phase space.
In other words, a point in phase space specifies the state of a mechanical system.

Symbolically, the representative point for the state of the system in the phase space can
be written as

r=(qs, 92, ...qn, P1, P2, ...pn).
As the time advances, the changing state of the system may be described by a curve r(t)

in the phase space. This is called phase path.

\ g4t
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3.2 Generalized momentum:

Consider a i particle mass m, it moving with velocity v and it moving in along x —
direction.

The kinetic energy of the particle is

1.

T=>-mx?
2

a m x

dx

We know that, the potential energy V is a function of x alone.

av
ax

dr  dv _ 9(T-V)

dx dx ox
=mx
dT av .
— = — =" Mmx
ax dx
= px

px - generalized momentum
Therefore, a system describe set of the generalized coordinates g, and generalizd
velocities g,.

Then define the generalized momentum corresponding to the generalized coordinate g, as

oL

Pk—aq-k

It also called conjugate momentum and canonical momentum.

Lagrangian equation of motion for a conservative system is given by,
4oy
dt aqk aqk -
CYEIR
dt aqk - 6qk

(dpk )_ aL
dqy oqy
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. _ oL
Pk 0qy

3.3 Cyclic or ignorable coordinates:

Coordinates that do not appear explicity in the lagrangian of a system is called
cyclic coordinate of ignorable coordinate.
If g, is the cyclic coordinate,

px does not appear the lagrangian of a system.

Thus, oL 0
aqy

qr - cyclic coordinate

pr - Cconjugate momentum

4oLy o
dt \ aqy 9qy
dL
aqy

ey )= 0

dpk:O
dt

( pe = oL
k™ aqy

The generalized momentum p, associated with a cyclic or ignorable coordinate is a

constant of motion of the system.

3.4 Hamiltonian function and conservation of energy:

Consider a general lagrangian L of a system given by

L=L (91, 92, ...qk ...... ,qn, 41, G2, --.4k,... Gn, )
And it also denoted by
L=L(gk, gk, t)
The total time derivative of L is

dL oL dqg L dqy JaL

- kae a T Ykag @ a0 T (1)

From lagrangian equations, we have
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oL d( oL
dqr  dt > 9dk

Substituting ;TL in equation (1), we get
k

dL _ d JaL oL dqy oL
=2k (o= )+ Yo — +
dt dt ~ 0qg dqy dt at

dL _ d , . 0L oL

w2k g Gl g ) * 5

d . JaL _ oL

w(Bk Qg — L)= - 5 e @)

The quantity in the bracket is sometimes called the energy function and is denoted by h:

. ) . oL
h (ql, (0 I ,qn,q1, 42, ...... CIn,t) = Zk qx a_qk - L - (3)
from equation (2) the total time derivative of h is
dh _ 0L
dt at

If the lagrangian L does not depend on time t explicitly, then % = 0. Sothat

dh
dt

=0 e (4)

h - constant
when the lagrangian is not explicit function of time, the energy function is the constant of

motion. It is one of the motion and is called Jacobi’s integral.

We know that a—,L = i
04y

Therefore, equation(1) can be written as,

%(ZRPRQR_L):'% ---------------- (5)

The quantity in the bracket is called the Hamiltonian function H.

ie., e Pk Gk — L=H e (6)

Conservation of energy:
Hamiltonian takes a special form, if the system is conservative. i.e., the potential
energy V is independent of velocity coordinates ¢, and the transformation equations for

coordinates do not contain time explicitly,
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rp=1; (Qu, 92, ...k ...... ,qn)

av

For a conservative system T 0.
k

L _

Therefore, P = 5 % (T=V)
k k

aT

oqy

So equation (6) is

T
I

= Yk Pk G — L
_ oo .
= 2k q"aqk L (7)

If r; does not depend on time t explicitly, then the kinetic energy T is homogeneous

quadratic function. It is easy to show that

. ar
2k U 5o~ = 2T s (8

In fact a natural conservative system neither T nor V contains any explicit time
dependent and T is a homogeneous quadratic function of the time derivatives ¢y,
Hence equation(7) and (8)
H=2T-1L
2T - (T - V)
H=T+ V = E, constant.

Thus the Hamiltonian H represents the total energy of the system E and is conserved,

provided the system is conservative and T is a homogeneous quadratic equation.

3.5 Canonical equations of motion:

Hamiltonian is a function of

H = H(qk; Pk, t) ------------ (1)
Differentiate the above equation,
_ o1 oH on
dH = 2ar qu + Ok dpk + ot dt
OH OH OH
dH = Zzla_qk dqy + e dpg + - dt --=-----ee- (2)

we know that, H = >, pr qx — L
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differentiate the above equation, we get

dH = Yidpr G + LiPk dqy - dL ------mmmmmmeee- ©)
B aL aL . aL
dL = Zka_qk dqx + Zka_qk dqe + o dt  -meeemeememeee- 4)
h oL _ . 0L _
wnere, 9ar = Pk, 3dr = Pk

the above values are substitute in equation(4), we get
: : oL
dL = Xk Prdqe + Xeprdde + - dt - (5)

substitute equation(5) in equation(3), we get

. , , ) oL
dH = Yk dpr G + XkPr Aqx - Xk Pr Aqx — 2k Pr Aqx — 30 dt

. . JL
dH = X dpr Gk - 2k Dr Aqx — a dt  ---mmmmmmmeeee- (6)

compare the coefficient of equations(3) and equation(6), then we get

i = oH
k pk
e = oH
k aqy

oH aL

at at

The above equations are called the Hamiltonian canonical equation.
. . . 0H
If q, is acyclic coordinate rreie 0.
k

From above equation p, =0,

pr = constant.

3.6 Applications:

(i) One dimensional simple harmonic oscillator:
Consider a particle having simple harmonic motion. the particle executing
simple harmonic motion, restoring force is directly proportional to displacements.

F « x
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Where k is the force constant.

The potential energy V=-[F.dr
V =- [—kx.dx = - @)
_ kx?
V==
The Kinetic energy T = % Mmx? - ©))
Lagrangian is given by
L=T-V (4)
Substitute equation (2) and (3) are substitute in equation (4)
L =imz- & 5)
_a
Px = 5%
D
Px= 5 LzMX 2 )
Dy = MXx
- bk
i= (6)
=pex-L e (7)
Equation (5) and (6) are substitute in equation (7), we get
= Px 12 k22
H=p, - S mx + >
P 1 Pxy2 K2
B m 2 m ( m ) * 2
= P_J% + E
m 2
Hamiltonian canonical equations are,
— 1
qi P,
g =
Pr = P
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T opr 0m
Br=-gr = kK ®)
Pe= = L (mX) e (©)
Equating equations (8) and (9)
mx = -kx
mi¥+kx =0 e (10)

This equation represents the equation of motion of a harmonic oscillator,

Divided by m in equation (10), we get

.k
¥+ =x=
m
¥+ w?Xx =
k
Where w?= =,
m
_’k
w = —_
m
2T
T=X
w
_2m
o[
m
m
=2 |—
k
1
vV ==
T
_ 1
1 |k
2w \Jm
36
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(iii)  motion of particle in a central force field:

All central forces are conservative in nature.

Kineticenergy T = % m (7% + r?9?)

Potential energy V = -

L

T-V
Substitute T and V values,

L= -m(i?+r20%) + =

Generalized momentum,

_ o
pr - 7
= mr
_ o
=mr?é
From above equations we get,
=X
m
y _ Do
0= mr2

The Hamiltonian equation is

H= YXepe g — L

H =p.7 +pg 0 -%m(f“z+ r2 6?) + k

2 2
_ pr Po 1 4 1 2 (pg) k
H =p —+ -—m(—r)+—mr— + =
br m be mr2 2 m2 2 (mrz)z) T
H = Pr o, e’ P pe’® _k
m mr2 2m 2mr?2 r
2 2
p Po k
H = T - =
2m + 2mr2 T
37
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0H 0H
We know thatp, = — —, ¢, = — —
pk aqk; qk apk
-f' = a_H - &
opr m
. OH
6 = — = Po_
e mr2
. 0H
Pr = ar
_ 20 pe* -2 -1
“or ( Zmr k r )
2 _
=P’ (Z2) , k
2m 13 r2
- _ P’ Lk
mr3 T2
_ Do k
T mr3 r2
2
. Po k
mr mr3 rz 0 (l)
. _  0H
Pe 25 = 0
s = e _ 4 2
Po ;T o (mrt o)
. 2 7 .
Pop=mr<0 + 2mri@ - ----memeeeeeee- 2)

The above two equations are the equation of motion of a particle under a central force.
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UNIT IV: SMALL OSCILLATIONS

Stable and unstable equilibrium —Formulation of the problem: Lagrange’s equations of
motion for small oscillations — Properties of T, V and w— Normal co ordinates and normal

frequencies of vibration— Free vibrations of a linear triatomic molecule.

4.1 Stable and unstable equilibrium:

A system is said to be in stable equilibrium, if a small displacement of the system
from the rest position( by giving a small energy to it ) results in a small bounded motion about
the equilibrium position.

In case, small displacement of the system from the equilibrium position results in an
unbounded motion, it is in an unstable equilibrium.

Further, if the system on displacement has no tendency to move about or away the
equilibrium position, it is said to be neutral equilibrium.
Example:
An example of stable equilibrium is a pendulum in the rest position and that of an
unstable equilibrium is an egg standing on one end. A coin placed flat anywhere on a stable is in

neutral equilibrium.

I

E-¥,
V1o ¥ 7
qe q, > q, . q}( —_—
(a) Stable equilibrium (b) Unstable equilibrium
Fig. 4.1

A graph drawn between the potential energy of the system and a particular coordinate gy, is

called potential energy curve.

The position A and B, where F = - Z—Z vanishes, are the position of equilibrium;

potential energy V is minimum ( V) at A is by displaced from A to Q by giving energy
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(E -V, ) and left to itself, the system tries to come in the position of minimum potential energy.

Consequently, the potential energy will change to kinetic energy and at A the energy
( E -V, ) will be purely in the kinetic form because of the conservation law.

This will be change again to potential form, when the system moves towards the position
P and hence a bounded motion ensues about the equilibrium position A. Obviously, the position
B of the maximum potential energy represents the unstable equilibrium because any energy
given to the system at this position will result more and more kinetic energy when the system
moves either left or right to it.

In this case, the system moves away from the equilibrium position. Incase of neutral
equilibrium, the potential energy is independent of the coordinates and equilibrium occurs at any

arbitrary value of that coordinate.

4.2 Lagrange’s equations of motion for small oscillations:

The potential energy of a conservative system, specified by n generalized coordinates
01, 02, 035 cvvevennnnnn. ,qn, IS represented as

V =(q1, 02 D (1)
When the system of the particles are small from the position of stable equilibrium.

We denote the displacement of the generalized coordinates from equilibrium position u;
ie., Q =q) + u e 2
Since, q; is fixed and ui may be taken as new generalized coordinates of the motion.

Expanding the potential energy about the position of equilibrium, we obtain

a
LR () =V (4], g8, endf) + T30 (G -0))

e s (5o ) (= 09 (G- ) oo 3

In consequence of equilibrium (g—:)o = 0. First term in the expansion represents the potential

energy in the equilibrium position and is constant for the system.
Assuming the potential energy in the equilibrium to be zero and writing

Ui = q; — q, and uj = qj - g7, we get

V= - 12 =1 Vl] T (4)
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a%v
0q; 0q;

Where V;; = ( ) = constant which is to be evaluated at g; = ¢ and ¢ =¢q; .

The constant V;; = Vj; form a symmetric matrix V.
In equation(4) we retain the terms quadratic in the coordinates.

The kinetic energy of the system is given be

1 .
V=2 =1 X=1 My qi g
1 . .
= 52?=1Z?=1 Mjj Ui Uj oo (5)

Because the generalized coordinates do not involve time explicitly and therefore kinetic energy
is a homogeneous quadratic function of generalized velocities.
Thus, the coefficients are, in general, function of generalized coordinates and

therefore expanding m;; in Taylor’s series, we get

amij
qu)o Uc + ..ooo.mmmmmmm- (6)

mij (O1, G2y ) = m;(q7, q3 e qd) + Yroi(

In equation(5) the term is already quadratic in the u;" ‘s we obtain the lowest non — vanishing
approximation to T in quadratic form only be retaining the first term in the expansion. If the

constant values of the function m;; are denoted by T;; , then the Kinetic energy is
1 . .
T = > im120j=1 Tij Wi W mmmmmmmeeeees (7
Obviously, the constant T;; are elements of symmetric matrix T. now, the lagrangian L (T -V)

can be written as

L = % ?:125';1( Ty wi v - Vi D — (8)

Using u; © s as generalized coordinates, the lagrange’s equations

d 6_L oL 0 (9)

E (an aqi

Take the form
2i=1(Ty iy + Vijuy)
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4.3 Normal co-ordinates and normal frequencies of vibration:

Let us define

U = Dg=q Qi Q== (1)
in terms of single column matrices
Uq Q1
u=|%| and Q =|@2
tn o
we have u=AQ e )

the potential energy V can be written as
1

— n n . .
Vo= SN e Vij Uiy

= 12 -1 U 'V, ij U

aVu e (3)

N |-

Where u is the transpose of u or single row matrix.

From equation (2) u=AQ
=Q A
Therefore, V=2QAVAQ e )

The kinetic energy K similarly is,

T=Xi2w Ty

We knowthat Va - w?> T a=0
Writing wy? = 4,
Therefore, equation (5) become,
2= 1( j Ak — Tij ajk) =0 e (6)
The complex conjugate of this equation is
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Foa(Vijag*— 4 Tjag*)=0 oo (7)
As ajj are real, we eliminate Vj; from equation(6) and (7) by multiplying the
former by ai and summing over | and the latter by ajx and summing over j. thus
(e — A*x)XiZjape Tyjag = 0 —mmmmmmmeees 8
If all A, are distinct, i.e., (A, — A; *) is not zero, then
XiXjak Tiyag = 0 e 9)
The two equations (8) and (9) can be combined into one by means of Kronecker delta

symbol 6; ,i.e.,
iXijk Tij ay = b mmemeeeeeeeeeee- (10)

Equation(8) and (10) can be written as

Writing A; = Ay 8y, We obtain equation(6)
TeaVijae = XiaaTyj @i A Sy e (12)

Which is in matrix notation,

(V2N - S — (13)
Multiplying by A
AV R - R —— (14)
But AVA =21
ATA=1 (15)

In view of equation(15) equation(5) in obtained to be

V=-02Q

N |-
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A 0 ... 07104
CRS L H
0 0 .. Adlo,

S (MQF+ Q3+ + 4, Q2

1
= > Zﬁ=1 Ak QI%

;RRawiQE e (16)
In view of equation(12) and (6) is obtained to be

T=20QI0

N |-

=SSR, 0F e (17)

Equation(16) and (17) that in the new coordinates, both the potential and kinetic
energies are the sum of squares only without any cross terms.
Lagrangian L = T - V is
1 . 1
L= 137,08 - i¥pa0fQ@f e (18)

The lagrangian equation is,

d , oL aL _
a(5ae) " g 7 O

For the new coordinates are,
O + g Qe =0 e (19)

Thus each new coordinates executes simple harmonic motion with a single frequency
and therefore, Q1, Q>,.....,Qn are called normal coordinates. The frequencies w1, wa,...... Wn
are referred as normal frequencies.

The solution of equation (19) is
Qk = fk cos (wkt + @x) e (20)
From equation (19) and (18),

Ui = X=1 ik Qk

= Yr=1fr aixcos(wi t + @) e (21)
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Each normal coordinates corresponds to a vibration of the system with only one frequency and

these component oscillations are called as the normal modes of vibration.

4.4 Free vibrations of a linear triatomic molecule:

Let us consider a linear triatomic molecule of the type AB2 ( COz ) in which A atom in
the middle and B atoms at the ends. The mass of A atom is M and that of each of the B atom is
m. the interatomic force between A and B atom is approximated by elastic force of spring force

constant k . the motion of the three atom is constrained along the line joining them.

m k M k n
e o 8 Ko™ X" %o
B A B e x =
T~ %~ %o
X [t X X > .
01 : 0 0
——
X,
@ w_

) —2——s

Fig. 4.2. Longitudinal oscillation of a linear symmetric triatomic molecule: (a) equilibrium

configuration (b) configuration at any instant t

There are three coordinates marking the positions of three atoms on the line. If x1, X2 and X, are
the positions of the three atoms at any instant from some arbitrary origin,
Then ,
V = % K(X2 - X1 - X0)? + % K(Xs - X2 - Xo)?
Where Xo is the distance between any A and B atoms in the equilibrium configuration.
The generalized coordinate is defined as,

Q1= X1 -Xo1 ,Q02= X2 - Xo2, 03 = X3 - Xo3
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X02 - Xo1 = Xo3 - Xo1 = Xo.

Then  Kinetic energy
1 . . 1 .
T=-m(gf + 43+ ;M43
Potential energy

V=ok(G-a)?+ k(- 6)?

2
T and V matrices are

m 0 O k -k 0
T:<0 M 0) amd VvV = (—k 2k —k) --------------- (1)

0 0 m

The secular equation is,
k —mw? —k 0
|V -w?l]| = ~k 2k —Mw?  —k = | JE— )
0 —k k — Mw?
w? (k-mw?) (k(M + 2m)- w?Mm) =0

The solution of the above equation is

k(1+ 27
N LT L L — ®

To determine the eigen vectors, we use the equation

k — mw? —k 0 A1k
(V - 0T ) a = —k 2k — Mw? —k ax| =0

0 —k k — Mw? A3k

The eigen vectors for the three modes of vibrations.

k -k O aqq
<—k 2k —k> (‘122) =0
0 -k k ass

ain - a1 = 0,

@ w;=0

-1+ 23 - asr = 0,
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-1 +asn = 0
Or il = an= &L=

Therefore the eigen vectors are given by,

a
ap = <a> --------------------- (4)
a
(b) wy = \/%

0 —k O a12
—k 2k - %k -k <a22> =0
0 —k 0/ \%32
a,, = 0,
-Ayz - azz = 0
Therefore, ay,;, =0, a;, = —as, = B

The eigen vectors are given by,

B
a = 0]  eeeememeeeeeeeeeeeees (5)
—B
k(1+ 2%
© w5 = a0
_zzmk g 0
M a3
-k -2 g (a23> =0
" ass
0o -k -
M
Mk
— Q13 + a,; = 0,
a3 * — azz t azz = 0,
2m
Therefore, ay3= A3 = Y, and a3 = '7 Y
The eigen vectors are given by,
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now, A matrix is

a1 Q12 Qg3
A = az1 Az A3
az; 04z dsz
a P 4
- L
=|la 0 Y (7)
a —B 14
We know the condition,
ATA =1
g o “ﬁ m o0 o\ /% P Y 100
om O M O a0—7y=010
v =Y v /o 0 m/\g g 00 1
a’?(2m + M) 0 0 1 0 0
0 2p? 0 = <0 1 o)
0 0 2y?m(1+ =9 00 1
Thus = L
T e
- 1
ﬁ_m
y = 1
/2m(1+27m)
The eigen vectors are
1
a = — 1
1 \/2m+M<1>
1
a—i 0
2 m( )
-1
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1
a3 = —— A t)
am (1+ 20) 1

B A B
b)) <@ ® o

B A .B
© <@ @ -

B A B

Fig. 4.3. Longitudinal normal modes of the triatomic molecule:
(@) Mode 1: all the three atoms are displaced equally in the same direction
(b) Mode 2: A atom does not vibrate and B atoms oscillate with equal
amplitude but in opposite directions.
(c) Mode 3: B atoms vibrate in phase with equal amplitudes and the middle
atom A vibrates in opposite phase with different amplitude.
Case 1:
ai1 = ax = a1 means the displacements of three atoms are the same in the same
direction. This is what expected from translatory motion.
Case 2:
a» = 0and ap = -asz implies that in this mode, the middle atom does not vibrate
and the end atoms(B) oscillate with equal amplitudes but in opposite direction.
Case 3:

a3 = a3 =y, and axs = - (%m)y, it show that the end atoms oscillate in phase

with equal amplitude, while the central atom vibrates in opposite phase with different amplitude.
The generalized coordinate gz, g2 and gs are related to the normal coordinates Q1, Qz,
and Qs by using the relation,
Gi = Xi=1 @ik Qi
therefore,
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q1 a B zy Q1
(qz)= « 0 =y ((22) -------------- 9)
qs a

i’B y Q3
The normal coordinate Q1 oscillates with frequency w1 = 0, Q2 with w2 = \/% and

Qs with w5 = —— ___ Sothat

Q1 = f1 cos (w1t + 1),
Q2
Qs

f2 cos (wat + ¢2)

f3 cos (wst + ¢@3)

Thus g1 = a f1 cos (wit + @1) + B f2 cos (wat + @2) + y f3 cos (wst + @3)

Or x1 = A cos(wit + @1) + B cos (w2t + ¢@2) + C cos (w3t + @3)

w; = 0, therefore,

Xt = A’ + B cos(wzt + ¢2) + C cos (wst + @3) + Xot

2m

X2 = A’ - ~ C cos (w3t + @3) + Xo2

X3 = A’ - B cos (w2t + @2) + C cos(wst + @3) + Xo3

where A’ represent the constant corresponding to rigid translation and Xo; represent the
equilibrium position of an atom.
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UNIT V: RELATIVITY
Inertial and non-inertial frames — Lorentz transformation equations — length contraction and
time dilation-relativistic addition of velocities — Einstein’s mass-energy relation Minkowski’s
space—four vectors — position, velocity, momentum, acceleration and force in four vector

notation and their transformations.

5.1 Inertial and non-inertial frames:

Event: an event is something that happens at a particular point in space and at a particular instant
of time, independent of the reference frame. Which we may use to described it.

A collision between two particles, an explosion of bomb or star and a sudden flash of light
are the examples of event.
Observer: an observer is a person or equipment meant to observe and take measurement about
the event. The observer is supposed to have with him scale, clock and other needful things to
observe that event.
Inertial frame: an inertial frame is defines as reference frame in which the law of inertial holds
true. i.e., Newton’s first law. such a frame is also called un — accelerated frame. E.g. a distant
star can be selected as slandered inertial frame of reference.
Non — inertial frame: it is defined as a set of coordinates moving with acceleration relative to
some other frame in which the law of inertia does not hold true. It is an accelerated frame. E.g.
applications of brakes to a moving train makes it an accelerated(decelerated) frame. So it

becomes a non — inertial frame.

5.2 Lorentz transformation equations:

Consider two frames of reference s and s’ . as shown in figure s is fixed and s’ is
moving along the direction of x — axis with a constant velocity.
After time t the frame of reference s’ has moved a distance xx’ = vt.
For the point P in space the coordinates are (X, y, z) with the reference to the frame s
and ( x’,y’, z’) with reference to the fame s’

According to Galilean transformation equation

X’ =x - vt
y =y
7z =7z
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t=t e 1)
Y4  FrameS \? Frame 8§’
P
Event
e el ]
<€ — X >’
» X T —— & X'
Fig. 5.1
Differentiate the equation (1)
ax' _dx
dt’ ~ dt
¢ =c¢c -V

This equation says if a person is moving in a spaceship the speed of the passing light
will be (c - v)

But according to the postulates of the special theory of relativity the velocity of
light remains constant in free space.

This suggests that the Galilean transformations are not in accordance with the
special theory of relativity. So the need for the new transformation equations is there.

However, the equation x” = x - Vvt is in accordance with the ordinary laws of
mechanics. So the new transformation for the x coordinates must be similar to this equation.
The simplest possible for of this can be

x> =k(x-vVvt) e (2)

where k depends only on the value of v and doen’t depend upon the values of x and t.
the above equation is linear and x’ has only one value for given value of x.

According to the first postulate of the special theory of relativity observation made in
the frame of reference s’ must be identical to those made in s expect for a change in the sign of v

and having the same value for the constant of proportionality k .
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x =k(x+vt) e (3)
Since the relative motion of s and s’ is combined to only x
y =y
7z =7z
=t

the value of x* from equation(2) can be substituted in equation(3)

X = k(k(x-vt)+vt’)
X=k*(Xx-vt) + kvt
kvt =x - kK¥(x-vt)

x—k®x+ k? vt

t =
kv

x (1-k?) + kvt
kv kv

_ x(1-k»
= kt + P 4

To find the value k, consider two reference frames s and s’. the spaceship in reference frame s
measure the time t and the spaceship in reference frame s’ measure timt t’.
X=c e (5)
X’ = ct’ e (6)
substituting the value of x’ and t’ from equation (2) and (4) in equation (6)

_ x (1-k?)
k(x-vt) = c (kt L )

.2
k x—kvt = ckt + Xk
kv
_ 1,2
kx - ¢k — et o+ kvt

(1-k? _ v
X (k - Ck—v) = th(l + Z)

_ ckt(1+2)

- L)

k - kv

53
. CLASSICAL MECHANICS AND RELATIVITY



Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

ckt(1+%)
X =

1
k(1—c@)

1+2
X =ct )

D @)
(1 - c@)

then substituting the value of x from equation (5) into (7) we get

_ (1+2)

ct=ct =
(1 - )
1

1- c(kzv DR

1 v?
1- k2 = c?
2 1
1- c2 = k2
2= —% e (8)
1- p
K= —— e 9)
1- 2%
the value of k when substituted in equation (2) we get
X’ = k(x-wt)
w=U (10)
y =y ~(1)
z’ z —mmmmees (12)

now we can rewrite the equation (4)

P =kt + 2Tk

kv
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X

s X
—kt+ - k(%)

-+

-+

, 1
=kt+> (G~ k)

-+

- x (L _
=kt +kZ(z- 1)

t,

k(t+ 25— 1))

2
X v
t +5 (1-—-1)

1=
C2

then substituting the value of k and k? in above equation from equation(9) and (8), we get

2
. _ x (1 _ t+T0-5m1)
C=k(t +2(5-1)) =

the equations (10), (11), (12), (13) are called Lorentz transformation equations.
These equations give the conversions for the measurements of time and space

made in stationary frame s to s’.

5.3 Consequences of Lorentz transformations:

(i) Length contraction
(if) Time dilation
(iii) Addition of velocities

5.3.1 Length contraction:

Measurement of space and time are not absolute but depend on the relative motion of
the observer and the observed objects.

Consider a rod of length Lo parallel to the x — axis and having co — ordinates X1 and x,
in the frame s.

An observer in the reference frame s measure the length of the rod as Lo = x2 - X1.
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Also consider a second reference frame’ s moving with a velocity v along x- axis with
respect to the reference frame s.
An observer in the reference frame s measures the length of therodasL = x2* - X1’

The relation between x; and X1’ and also between x2 and X2’ according to inverse

Lorents Transformation will be

_ xp+vt
X1 =

1-2

2

_ xp+vt
X2 =

o2

1-=

L xp+vt x1tvt
° -z [z
c? c2
I !
Xp— X
I—O - 2 1
12
)
L
Lo =
)
-z
v2
L = Lo 1 — -
c

This equation shows that the length of stationary object with respect to an observer in
motion appears to be shorter than length measured by an observer at rest.

Similarly when the object is in motion with respect to a stationary observer, again the
object appears to be shortened in length.

This relativistic result is true for both the cases, i.e., whether object is in motion or the
observer is in motion the object appears to be contracted or shortened in length. This
phenomenon is called Lorentz - Fitzeralds contractions.

Lorentz - Fitzeralds contractions is appreciable only when the velocity v is
comparable to the velocity of light c.

Let consider a rod of length L moving with a velocity which is equal to 0.6¢. then its

length as measured from another frame is given by Lo. Here we have v = 0.6¢
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2
L = LO - C_2
L = Lovl — 0.36
L = 0.8 Lo

The contractioninlength= Lo - L = 0.2 Lo
Instead if the velocity of the body is negligible small as compared to c, the contraction
in length is also negligible i.e., compared to c, the contraction in length is also negligible. i.e.,
Lo = L
5.3.2 Time dilation:

According to the special theory of relativity the time intervals are also affected by
the relative motion between two frames of reference.

Let’s consider two frames of references A and B such that B is moving along x
axis with respect to A with a constant velocity v, the duration of an event taking place at a point
in space is measured from both the frames of reference.

The observers in both the frames measure the time instants of beginning of the
event and then the time instants of the ending of the event.

Suppose, the event begins time t; in frame A and at time t;” in frame B. the event
ends at time t2 in frame A and at time t2” in frame B. if the time interval measured in a is t and in

B it is to, then we have,

and
t=te-t2. e (2)

According to the Inverse Lorentz transformation equation,

th+ xr%
tp = = :22 """""""" 3)
T2
equation (2) become
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t=1t-1t1

! v 12 v
t2+ x’c—z t1+ x’c—z

From equation(4) we can say that the interval of time to measured in the moving frame B is
smaller than that in stationary frame A.
It shows that the moving clock appears to go slower than the stationary clock.
So to a moving observer time appears to be expanded. This phenomenon is called time

dilation.
5.3.3 Addition of velocities:

Let the coordinates of a particle in frame s be (X, y, z, t) and in frame s’ (x’, y’, Z’, t)

, then the components of its velocity in two frames can be written as

dx dy dz

Ux = —, Uy = —=, and Uz = — in s
o = W e i
Ux — U ol and u; " ins

According to the inverse Lorentz transformation
X=y(x +vt),
y =Yy
zZ = Z
2 v b
= )/(t + C_ZX )
therefore, dx =y (dx’ + vdt’),
dy =y
dz = dz’
dt =y (dt + Sdx)
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dx

u =
x dt

Yy (dx + vdt)
y (dt + Clzdx’)
dx/

F‘I“U

dx! v

I+ vz

Uy! + v

1+ ul Clz
Similarly,

uy’
v
y(1+ u;cc_z)

Uz!

Uu = —————
y(1+ up—p)

this is the relativistic law of addition of velocities while in classical mechanics

Ux = u, + v, uy= u, ,and u; = u,’

when v is less than the speed of light c.

if we take the Lorentz transformation, we can prove that

) _ Uy + v
ux - v
1+ u, 2
u
! — Y
uy - v
1+ 'LLxC—Z
1 Uz
U,Z - v
1+ uxc—z

In case a particle ( as photon ) is moving with a velocity ¢ in the frame s’ and s is moving with

velocity c relative to s along positive x -axis direction,

because u,’ = ¢, v = c.
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5.4 Einstein’s mass-energy relation:
In relativity, work done by a force = [F. ds
Relativistic kinetic energy K is given by

k = fJ:OdF ds

_ u=dd(mu) ds
B fu=0 at  dt dt

. d
Since Z=u
dt

d(mu) dt
dt

u=d
Ju=o

f;:od ud(mu)

The relativistic formula is

m
m= —
¥
2
2
2 — Mo
m= = 2_u2
2
mZ(CZ u2) — moz C2
m2 c2 m2 u2) — m02 c2

taking differentiation on both sides
2mc?dm - m?2udu - u? 2mdm = 0

Dividing the equation by 2m, we get

2m c? dm m? 2udu u? 2mdm 0
2m 2m 2m

2mc?dm _ m?2udu u? 2m dm
2m 2m 2m

ud(mu) = mudu +u?dm = ¢ dm
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u=d d(mu)
k = [, —— dt
u=d
Sy wd (mu)
= & [“% dm
u=0
= mc? - mpc?
—_Mo 2 2
——uZ(C - Mo C )
Ji- =
= moc? (— = - 1)
¥
2

=moc? (1 - % )12 - 1)

CZ
Using the Binomial expansion of u/c all get

3 ,u

- 2 1 ,uy2 2t
k =moc (1+2(C) L G

k=moc® (1+3(5))

2 1 uyo
kK =moc > (=)
_ 1 2
k = > Mo U
which is the classical result obtained by neglecting higher order terms

1
E = moC2 +EmoU2

This equation represents the equivalence of mass and energy.

5.5 Minkowski’s space:

Minkowski considered a four dimensional cartesian space in which the position

is specified by three coordinates X, y, z and the time is referred by a fourth coordinate ict.
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If we write X1 =X, X2 =y, X3 =z and X4 = ict, then an event is represented by the
position vector (X1, X2, X3, X4) in this four dimensional space. Of course the fourth dimension ,
referring to time, is imaginary. This four dimensional space is called Minkowski or world
space.
It is also referred as space-time continuum and sometimes briefly as four-space.
The square of the magnitude of the position vector in such a four-space has the form

82=X12+X22 +X32 +X42
=x2+y?+z22-c? e (1)
Lorentz transformations are designed so that the speed of light remains constant in S and
S’ inertial frames (S’ is moving with constant velocity v relative to S) and this condition is

equivalent to require that the position vector in the four-space is held invariant under the

transformations, i.e.,

P=x2+y2+72- 2
=X+ yR 472

s?=x'2 + x'% + x'% + X%
= X2+ X% o+ x4 x,t

2 — 4 12
= Lp=1%y

= Vo1’ )

This equation is analogous to the distance — preserving orthogonal transformation for
rotation from one frame of reference to another in three dimensional space.

Thus the coordinates X1, X2, X3, and x4 chosen above, for an orthogonal coordinate
system in four dimension and equation (2) implies that the transformations which we are
seeking, correspond to a rotation in a four dimensional space. In fact, these orthogonal
transformations in the four — dimensional Minkowski space are the Lorentz transformations.

5.6 Four vectors :

A vector in four dimensional Minkowski space is called a four — vector. Its

components transform from one frame to another similar to Lorenz transformation.
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An event in four dimensional space is represented by a world point( X1, X2, X3, Xa ).
The Lorentz transformations from s — frame to s’ frame correspond to orthogonal

transformations in the four-space and are represented as

— V4
x,u, - v=1 a;w Xy
X, y 0 0 iBy\ /%
x2, _ 0 1 0 0 Xy
x3' B 0 0 1 0 X3 (1)
x,' =iy 0 0 vy X4
With the condition
fL:l x’fl_ = z:l x‘uz ----------------- (2)
We may represent the position vector of a world point b
Xy = (X1, X2, X3, Xa ) = (rjict) e ©)

Where ( X1, X2, X3, Xa ) and ( X, y, z ) represent the position vector r of a point in three
dimensional space and x4 = ict orxs = iT . r (=X,Y, z) is the space part and ict is the time
part of the four dimensional position vector x,,.

A four vector A, is a vector in four dimensional space with components A1, Az, As
and Az and is represented as

Ay = (A1, Az Az, As)
= (A i4) e 4)

Where A (= A1, A2, As) is the space component and A4 (=i Ay) is the time component. These

components transform from s frame to s’ frame similar to Lorents transformation.i.e.,

Ay y 0 0 ify\ /A
A 0 1 0 O A,
A - 0 01 0 A, | T ®)
A, —ify 0 0 vy A,

A”’ = 23=1 AQuy A’
A= v (A+ B A
A = Ay

A3’ = As
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A =y (Ad-iBA)

Examples of four vector:

5.7 Position four — vector ( x!,):

It is expressed as
= (X1, X2, X3, Xa )

(r, ict)

Xu

5.8 Velocity four — vector ( u, ):

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli

The components of the velocity four — vector u,, are defined

dxq, _ dxq dt

U = =
dt dt dt
_ dx 1 — Ux
dt 2 2
-7 i-%
uz - d.xZ - d.xZ E
dat dt drt
- %y 1 - _ Y
dt 2 2
S
u3 - dX3 - dX3 E
dat dt dt
_ dz 1 — Uz
dt 2 2
T
_ dx4 _ d(ict) dt
Uyp = — = —
dt dat dr
_ ic
2
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Hence u, = (U1, Uz Us Us )

Uy Uy Uy ic )

YRR T R
c? c? c? c?
u ic
u’# ( 2’ 2 )
u u
/1—c—2 /1—c—2

Where u = % is the three dimensional velocity vector.

The square of the magnitude of the velocity four vector is given by

u, u, = - = -C
lilll 1—

Which is Lorentz invariant.

5.9 Momentum four vector (p,,):

The components of four — momentum p,, are defined by

— _ Mo ux
p1 = Moy Uy = —
-z

:mux:px
— Mo Uy
P2 = Mo U = 2
-z

= mu, = p,
— _ Mou
p3 = Mp Uz = 52
-z

:muZ:pZ
_ . mgic
Py = My Uy = >
u
-z

. . E

=mic =1-

c

. . FE .
Hence Pu = (P1,P2,p3,pa ) = (P, p2,ps,mic ) = (p, i-) withp=mu

The square of the magnitude of the four — momentum is given by
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EZ
Puby =P°- % = -(E*—= p?c?)/c?
= - my? c?

This p, is also called energy — momentum four — vector.

5.10 Acceleration four — vector (a,, ) :

Its components are defined by

a Guy _ duy dt _ d Ux 1
1 dt dt drt dt u2 u?2
1-= )1~ =
1 u Uy U
= u2( xuz + 2 1xu2 3/2 )
A N 2
But u?= u,® + uy? + u,? and
hence, UT = Uy Uy + Uy Uy, + Uy Uy,
therefore,
u Uy (u.
o= g )
1 C_2 62(1——2)2
u uy (u. )
a = yu2 + y
l_C_Z C2(1__2)2
u uz (u. u
g =tz 4 M2 ®)
l_C_Z C2(1__2)2
also &—%—%E—i i 1
dt dt drt dat u2 u?
i(u.u)
)
Cl(l—c—z)z
Thus a =( a + u(u.a) i(u.a) )
H u? 2 u?y; 1 Y
1-= (1-=) ct (1-7)
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5.11 Force Four — vector( F, ):

F _ dpy _ d (mg uu)
H = — p— ———————
dt dt
d?x
- U
- m
0 qq2

This equation called the Minkowski force equation and is presented in a form similar to

Newton’s equation.

In the limit u << ¢, the three — dimensional component are obtained as

d
Fk - Pk
dt
d?xy
0 dr2

Which is the classical Newton’s equation.

The components of four — force Fu are

= dp, _ dp, dt - dpy
dr dt drt dt
— Fy
u2
-z
.. F,
Similarly, F, = E—
u
-z
F,
Fz = =
1
)
Fs = = =2 "_=y— (=
4 ar dt drt Y dt ( c )
_ iy dE
c dt
F iy dE
Thu Fy = - —
K ( w2’ ¢ dt )
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The four — force may be expressed in terms of four — acceleration vector as

_ dﬂ _ d(mouy) _
F” o4t dt = Mo a“
Hence,
_ moa mou (u. a) imy(u. a)
F[',l - ( Ouz + 2 u2 1 . u2 ) ------------- (2)
1_C_2 Cz(l_c_z)z Cl(l_c_z)z

Since equation(1) and (2) are the same, equating the space part of F, , we get

F oo _mea o mu@.a 3
(1- "C‘_j)l/z c2 (1_1:_2)3/2 ( )
F = ma+ s 4
- c2— y2

dp . f . . .
Where F = d—i is the three — dimensional force vector and in general is not equal to ma.

The fourth component of F, in (2) can be written as

imo.-a) _ W Yy ]
oy = CFW) 5)
Because using (3)
Fu = mg (u.a) + mo(uu) (u. a)

u2 201 42 3/2
1- = c? (1 Cz)

- my (u.a) ( 1+ mo (u. a)

1_% C2_u2
C
_ mo(ua) 1
- 2
1—1:—5 1—1;—2
_ Mo(u.a)

(1-2y32

Thus the fourth component of £, from (5) and (1) is

iy dE _ i_V(|: u)
c dt c '
dE
— =F.u
dt
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The right hand side of above equation represents the power and the left hand side for a single
particle Z—f = % (mc?) represent the rate of change of energy.

This is in accordance with the conservation of energy.

Thus the four — force F, is represented as

i (F.u)

F= (— 5) (6)

The Minkowski force equation is

A Y — @

It represent the fundamental equations of mechanics in the covariant four — vector form with the

components given by equation (6)
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